Commit f735ec7a authored by vincentvigon's avatar vincentvigon
Browse files

passage a gitlab

parent 23e577d5
File deleted
.idea/
**/private
**/build
**/__pycache__
**/.ipynb_checkpoints/
**/.DS_Store
......@@ -2,25 +2,41 @@
<project version="4">
<component name="ChangeListManager">
<list default="true" id="32cccc82-0ffe-41c7-b11c-72a65c78617f" name="Default" comment="">
<change afterPath="$PROJECT_DIR$/alea/matos/gaussian-processes-1.ipynb" afterDir="false" />
<change afterPath="$PROJECT_DIR$/data_analysis/D12_GLM/__init__.py" afterDir="false" />
<change afterPath="$PROJECT_DIR$/data_analysis/D12_GLM/pack/__init__.py" afterDir="false" />
<change afterPath="$PROJECT_DIR$/data_analysis/D12_GLM/pack/toto.py" afterDir="false" />
<change afterPath="$PROJECT_DIR$/data_analysis/D12_GLM/toto2.py" afterDir="false" />
<change afterPath="$PROJECT_DIR$/data_analysis/__init__.py" afterDir="false" />
<change beforePath="$PROJECT_DIR$/.idea/aleaDataSignal.iml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/aleaDataSignal.iml" afterDir="false" />
<change beforePath="$PROJECT_DIR$/.idea/inspectionProfiles/Project_Default.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/inspectionProfiles/Project_Default.xml" afterDir="false" />
<change beforePath="$PROJECT_DIR$/.idea/misc.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/misc.xml" afterDir="false" />
<change beforePath="$PROJECT_DIR$/.gitignore" beforeDir="false" afterPath="$PROJECT_DIR$/.gitignore" afterDir="false" />
<change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
<change beforePath="$PROJECT_DIR$/alea/.ipynb_checkpoints/N02_histogramme_densite-checkpoint.ipynb" beforeDir="false" afterPath="$PROJECT_DIR$/alea/.ipynb_checkpoints/N02_histogramme_densite-checkpoint.ipynb" afterDir="false" />
<change beforePath="$PROJECT_DIR$/alea/.ipynb_checkpoints/N04_plusDeLois-checkpoint.ipynb" beforeDir="false" afterPath="$PROJECT_DIR$/alea/.ipynb_checkpoints/N04_plusDeLois-checkpoint.ipynb" afterDir="false" />
<change beforePath="$PROJECT_DIR$/alea/N00_python_de_base.ipynb" beforeDir="false" afterPath="$PROJECT_DIR$/alea/00-python_de_base.ipynb" afterDir="false" />
<change beforePath="$PROJECT_DIR$/alea/N01_numpy.ipynb" beforeDir="false" afterPath="$PROJECT_DIR$/alea/01-numpy.ipynb" afterDir="false" />
<change beforePath="$PROJECT_DIR$/alea/N02_histogramme_densite.ipynb" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/N04_plusDeLois.ipynb" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/N06_TCL_intervalConfiance_student.ipynb" beforeDir="false" afterPath="$PROJECT_DIR$/alea/06-TCL_intervalConfiance_student.ipynb" afterDir="false" />
<change beforePath="$PROJECT_DIR$/data_analysis/D12_GLM/D_12_GLM.ipynb" beforeDir="false" afterPath="$PROJECT_DIR$/data_analysis/D12_GLM/D_12_GLM.ipynb" afterDir="false" />
<change beforePath="$PROJECT_DIR$/memo" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/.ipynb_checkpoints/02-histogramme_densite-checkpoint.ipynb" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/.ipynb_checkpoints/04-plusDeLois-checkpoint.ipynb" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/.ipynb_checkpoints/08-Chaine_de_Markov-checkpoint.ipynb" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/.ipynb_checkpoints/10-RadomVec_GaussianVec-checkpoint.ipynb" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/.ipynb_checkpoints/11-Analyse_en_composantes_principales-checkpoint.ipynb" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/.ipynb_checkpoints/12-GLM-checkpoint.ipynb" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/.ipynb_checkpoints/N00_python_de_base-checkpoint.ipynb" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/.ipynb_checkpoints/N01_numpy-checkpoint.ipynb" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/.ipynb_checkpoints/N02_histogramme_densite-checkpoint.ipynb" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/.ipynb_checkpoints/N04_plusDeLois-checkpoint.ipynb" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/.ipynb_checkpoints/N06_TCL_student-checkpoint.ipynb" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/04-plusDeLois.ipynb" beforeDir="false" afterPath="$PROJECT_DIR$/alea/04-plusDeLois.ipynb" afterDir="false" />
<change beforePath="$PROJECT_DIR$/alea/08-Chaine_de_Markov.ipynb" beforeDir="false" afterPath="$PROJECT_DIR$/alea/08-Chaine_de_Markov.ipynb" afterDir="false" />
<change beforePath="$PROJECT_DIR$/alea/11-Analyse_en_composantes_principales.ipynb" beforeDir="false" afterPath="$PROJECT_DIR$/alea/11-Analyse_en_composantes_principales.ipynb" afterDir="false" />
<change beforePath="$PROJECT_DIR$/alea/build/02-histogramme_densite.html" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/build/02-histogramme_densite.ipynb" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/build/02-histogramme_densite.slides.html" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/build/04-plusDeLois.html" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/build/04-plusDeLois.ipynb" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/build/04-plusDeLois.slides.html" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/build/img/.~lock.graph_ponder.odg#" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/build/img/discrep.png" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/build/img/distributions.jpg" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/build/img/graph_ponder.odg" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/build/img/graph_ponder.png" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/build/img/identite.png" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/build/img/iris.png" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/build/img/pageRank.odg" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/build/img/pageRank.pdf" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/build/img/troisEtats.odg" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/build/img/troisEtats.pdf" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/index.ipynbt" beforeDir="false" />
<change beforePath="$PROJECT_DIR$/alea/makefile" beforeDir="false" afterPath="$PROJECT_DIR$/alea/makefile" afterDir="false" />
</list>
<option name="EXCLUDED_CONVERTED_TO_IGNORED" value="true" />
<option name="TRACKING_ENABLED" value="true" />
......@@ -36,27 +52,6 @@
</component>
<component name="FileEditorManager">
<leaf SIDE_TABS_SIZE_LIMIT_KEY="300">
<file leaf-file-name="toto.py" pinned="false" current-in-tab="false">
<entry file="file://$PROJECT_DIR$/data_analysis/D12_GLM/pack/toto.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="72">
<caret line="4" selection-start-line="4" selection-end-line="4" />
</state>
</provider>
</entry>
</file>
<file leaf-file-name="toto2.py" pinned="false" current-in-tab="false">
<entry file="file://$PROJECT_DIR$/data_analysis/D12_GLM/toto2.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="126">
<caret line="7" selection-start-line="7" selection-end-line="7" />
<folding>
<element signature="e#0#49#0" expanded="true" />
</folding>
</state>
</provider>
</entry>
</file>
<file leaf-file-name="00-python_de_base.ipynb" pinned="false" current-in-tab="false">
<entry file="file://$PROJECT_DIR$/alea/00-python_de_base.ipynb">
<provider selected="true" editor-type-id="ipnb-editor">
......@@ -75,7 +70,7 @@
</provider>
</entry>
</file>
<file leaf-file-name="04-plusDeLois.ipynb" pinned="false" current-in-tab="true">
<file leaf-file-name="04-plusDeLois.ipynb" pinned="false" current-in-tab="false">
<entry file="file://$PROJECT_DIR$/alea/04-plusDeLois.ipynb">
<provider selected="true" editor-type-id="ipnb-editor">
<state>
......@@ -84,10 +79,19 @@
</provider>
</entry>
</file>
<file leaf-file-name=".gitignore" pinned="false" current-in-tab="true">
<entry file="file://$PROJECT_DIR$/.gitignore">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="90">
<caret line="5" column="6" selection-start-line="5" selection-start-column="6" selection-end-line="5" selection-end-column="6" />
</state>
</provider>
</entry>
</file>
<file leaf-file-name="_multivariate.py" pinned="false" current-in-tab="false">
<entry file="file://$USER_HOME$/Library/Python/3.6/lib/python/site-packages/scipy/stats/_multivariate.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="311">
<state relative-caret-position="11988">
<caret line="677" selection-start-line="677" selection-end-line="677" />
</state>
</provider>
......@@ -96,7 +100,7 @@
<file leaf-file-name="function_base.py" pinned="false" current-in-tab="false">
<entry file="file:///usr/local/lib/python3.6/site-packages/numpy/lib/function_base.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="267">
<state relative-caret-position="81630">
<caret line="4567" column="4" selection-start-line="4567" selection-start-column="4" selection-end-line="4567" selection-end-column="4" />
</state>
</provider>
......@@ -150,6 +154,7 @@
<option value="$PROJECT_DIR$/data_analysis/D12_GLM/toto2.py" />
<option value="$PROJECT_DIR$/alea/matos/gaussian-processes-1.ipynb" />
<option value="$PROJECT_DIR$/alea/10-gaussianVector_ACP.ipynb" />
<option value="$PROJECT_DIR$/.gitignore" />
</list>
</option>
</component>
......@@ -162,7 +167,7 @@
<component name="NodePackageJsonFileManager">
<packageJsonPaths />
</component>
<component name="ProjectFrameBounds" fullScreen="true">
<component name="ProjectFrameBounds" extendedState="6" fullScreen="true">
<option name="width" value="1920" />
<option name="height" value="1080" />
</component>
......@@ -174,6 +179,7 @@
<foldersAlwaysOnTop value="true" />
</navigator>
<panes>
<pane id="Scope" />
<pane id="ProjectPane">
<subPane>
<expand>
......@@ -181,34 +187,11 @@
<item name="aleaDataSignal" type="b2602c69:ProjectViewProjectNode" />
<item name="aleaDataSignal" type="462c0819:PsiDirectoryNode" />
</path>
<path>
<item name="aleaDataSignal" type="b2602c69:ProjectViewProjectNode" />
<item name="aleaDataSignal" type="462c0819:PsiDirectoryNode" />
<item name="alea" type="462c0819:PsiDirectoryNode" />
</path>
<path>
<item name="aleaDataSignal" type="b2602c69:ProjectViewProjectNode" />
<item name="aleaDataSignal" type="462c0819:PsiDirectoryNode" />
<item name="alea" type="462c0819:PsiDirectoryNode" />
<item name="img" type="462c0819:PsiDirectoryNode" />
</path>
<path>
<item name="aleaDataSignal" type="b2602c69:ProjectViewProjectNode" />
<item name="aleaDataSignal" type="462c0819:PsiDirectoryNode" />
<item name="alea" type="462c0819:PsiDirectoryNode" />
<item name="matos" type="462c0819:PsiDirectoryNode" />
</path>
<path>
<item name="aleaDataSignal" type="b2602c69:ProjectViewProjectNode" />
<item name="aleaDataSignal" type="462c0819:PsiDirectoryNode" />
<item name="data_analysis" type="462c0819:PsiDirectoryNode" />
</path>
<path>
<item name="aleaDataSignal" type="b2602c69:ProjectViewProjectNode" />
<item name="aleaDataSignal" type="462c0819:PsiDirectoryNode" />
<item name="data_analysis" type="462c0819:PsiDirectoryNode" />
<item name="D12_GLM" type="462c0819:PsiDirectoryNode" />
</path>
<path>
<item name="aleaDataSignal" type="b2602c69:ProjectViewProjectNode" />
<item name="aleaDataSignal" type="462c0819:PsiDirectoryNode" />
......@@ -218,7 +201,6 @@
<select />
</subPane>
</pane>
<pane id="Scope" />
</panes>
</component>
<component name="PropertiesComponent">
......@@ -355,7 +337,8 @@
<servers />
</component>
<component name="ToolWindowManager">
<frame x="0" y="0" width="1920" height="1080" extended-state="0" />
<frame x="0" y="0" width="1440" height="900" extended-state="6" />
<editor active="true" />
<layout>
<window_info anchor="bottom" id="TODO" order="6" />
<window_info anchor="bottom" id="Event Log" order="7" sideWeight="0.5005325" side_tool="true" weight="0.3299389" />
......@@ -364,10 +347,9 @@
<window_info anchor="bottom" id="Python Console" order="7" />
<window_info anchor="bottom" id="Run" order="2" weight="0.25865582" />
<window_info anchor="bottom" id="Terminal" order="7" sideWeight="0.49946752" weight="0.31059062" />
<window_info content_ui="combo" id="Project" order="0" visible="true" weight="0.25825346" />
<window_info active="true" content_ui="combo" id="Project" order="0" visible="true" weight="0.26180258" />
<window_info anchor="bottom" id="Docker" order="7" show_stripe_button="false" />
<window_info anchor="right" id="Database" order="3" />
<window_info anchor="bottom" id="Find" order="1" weight="0.3299389" />
<window_info anchor="right" id="SciView" order="3" weight="0.32960597" />
<window_info id="Structure" order="1" side_tool="true" weight="0.25" />
<window_info id="Favorites" order="2" side_tool="true" />
......@@ -378,6 +360,7 @@
<window_info anchor="right" id="Ant Build" order="1" weight="0.25" />
<window_info anchor="bottom" id="Message" order="0" />
<window_info anchor="bottom" id="Cvs" order="4" weight="0.25" />
<window_info anchor="bottom" id="Find" order="1" weight="0.3299389" />
</layout>
</component>
<component name="TypeScriptGeneratedFilesManager">
......@@ -391,6 +374,78 @@
<option name="LAST_COMMIT_MESSAGE" value="toto" />
</component>
<component name="editorHistoryManager">
<entry file="file://$PROJECT_DIR$/data_analysis/D12_GLM/pack/toto.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="72">
<caret line="4" selection-start-line="4" selection-end-line="4" />
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/data_analysis/D12_GLM/toto2.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="72">
<caret line="7" selection-start-line="7" selection-end-line="7" />
<folding>
<element signature="e#0#49#0" expanded="true" />
</folding>
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/alea/00-python_de_base.ipynb">
<provider selected="true" editor-type-id="ipnb-editor">
<state>
<selected id="0" />
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/alea/06-TCL_intervalConfiance_student.ipynb">
<provider selected="true" editor-type-id="ipnb-editor">
<state>
<selected id="0" />
</state>
</provider>
</entry>
<entry file="file://$USER_HOME$/Library/Python/3.6/lib/python/site-packages/scipy/stats/_multivariate.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="12186">
<caret line="677" selection-start-line="677" selection-end-line="677" />
</state>
</provider>
</entry>
<entry file="file:///usr/local/lib/python3.6/site-packages/numpy/lib/function_base.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="81630">
<caret line="4567" column="4" selection-start-line="4567" selection-start-column="4" selection-end-line="4567" selection-end-column="4" />
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/alea/matos/gaussian-processes-1.ipynb">
<provider selected="true" editor-type-id="ipnb-editor">
<state>
<selected id="0" />
</state>
</provider>
</entry>
<entry file="file:///usr/local/lib/python3.6/site-packages/numpy/random/__init__.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="1728">
<caret line="101" column="13" selection-start-line="101" selection-start-column="7" selection-end-line="101" selection-end-column="13" />
<folding>
<element signature="e#4478#4542#0" expanded="true" />
</folding>
</state>
</provider>
</entry>
<entry file="file://$USER_HOME$/Library/Python/3.6/lib/python/site-packages/scipy/stats/__init__.py">
<provider selected="true" editor-type-id="text-editor" />
</entry>
<entry file="file://$PROJECT_DIR$/alea/04-plusDeLois.ipynb">
<provider selected="true" editor-type-id="ipnb-editor">
<state>
<selected id="0" />
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/data_analysis/D12_GLM/pack/toto.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="72">
......@@ -464,7 +519,7 @@
</entry>
<entry file="file://$PROJECT_DIR$/data_analysis/D12_GLM/toto2.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="126">
<state relative-caret-position="72">
<caret line="7" selection-start-line="7" selection-end-line="7" />
<folding>
<element signature="e#0#49#0" expanded="true" />
......@@ -472,14 +527,8 @@
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/alea/output_10_0.png">
<provider selected="true" editor-type-id="images" />
</entry>
<entry file="file://$PROJECT_DIR$/alea/notebook.tex">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="-4763" />
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/alea/output_10_0.png" />
<entry file="file://$PROJECT_DIR$/alea/notebook.tex" />
<entry file="file://$PROJECT_DIR$/alea/00-python_de_base.ipynb">
<provider selected="true" editor-type-id="ipnb-editor">
<state>
......@@ -487,13 +536,7 @@
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/alea/scatter3d.ipynb">
<provider selected="true" editor-type-id="ipnb-editor">
<state>
<selected id="0" />
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/alea/scatter3d.ipynb" />
<entry file="file://$PROJECT_DIR$/alea/matos/gaussian-processes-1.ipynb">
<provider editor-type-id="text-editor" />
<provider selected="true" editor-type-id="ipnb-editor">
......@@ -504,25 +547,19 @@
</entry>
<entry file="file:///usr/local/lib/python3.6/site-packages/numpy/lib/function_base.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="267">
<state relative-caret-position="81630">
<caret line="4567" column="4" selection-start-line="4567" selection-start-column="4" selection-end-line="4567" selection-end-column="4" />
</state>
</provider>
</entry>
<entry file="file://$USER_HOME$/Library/Python/3.6/lib/python/site-packages/scipy/stats/_multivariate.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="311">
<state relative-caret-position="11988">
<caret line="677" selection-start-line="677" selection-end-line="677" />
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/alea/10-gaussianVector_ACP.ipynb">
<provider selected="true" editor-type-id="ipnb-editor">
<state>
<selected id="21" />
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/alea/10-gaussianVector_ACP.ipynb" />
<entry file="file://$PROJECT_DIR$/alea/06-TCL_intervalConfiance_student.ipynb">
<provider selected="true" editor-type-id="ipnb-editor">
<state>
......@@ -533,7 +570,14 @@
<entry file="file://$PROJECT_DIR$/alea/04-plusDeLois.ipynb">
<provider selected="true" editor-type-id="ipnb-editor">
<state>
<selected id="0" />
<selected id="35" />
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/.gitignore">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="90">
<caret line="5" column="6" selection-start-line="5" selection-start-column="6" selection-end-line="5" selection-end-column="6" />
</state>
</provider>
</entry>
......
No preview for this file type
%% Cell type:markdown id: tags:
# histogrammes et densités
%% Cell type:code id: tags:
``` python
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```
%% Cell type:markdown id: tags:
## Graphiques en batons
bonjour toto \index{toto}
%% Cell type:code id: tags:
``` python
x= [1,1.5,2,2.5,3]
y= [1,4,3,4,1]
""" Par défaut width=0.8, ce qui ne ferait pas joli ici"""
plt.bar(x,y,edgecolor="k",width=0.5); # "k" c'est black
```
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
""" Population totale par sexe et âge au 1er janvier 2018, France. source:
https://www.insee.fr/fr/statistiques/fichier/1892086/pop-totale-france.xls """
nb_hommes=[370264,380786,390091,398757,409096,419458,422341,433633,433293,435936,432382,439050,429300,427923,426042,428943,436599,442760,420335,411745,397771,394287,384071,365958,361467,378875,380348,386998,386152,391032,392666,397890,400708,396839,392953,417916,422120,429147,406565,399665,406674,394569,405691,428904,452528,462957,459928,451838,443890,438042,436591,445267,446241,448156,443106,425952,424946,421198,414831,404537,400466,395119,387700,385660,374649,378923,368702,381299,370877,367734,357172,334517,249885,240416,230819,211303,184231,186016,189134,179799,169183,162468,149256,142187,126683,119777,106150,94411,76897,65760,54174,43318,35138,26429,19424,14138,10396,7400,2994,1612,2929,]
nb_femmes=[354226,363749,373574,386477,389867,398597,405611,415679,412153,415631,413237,420649,411513,409866,407270,408649,416111,421402,398604,394150,380429,381718,374299,363324,360271,378034,385787,396563,401533,408101,410675,420196,419362,418329,413567,437539,440858,446720,423369,413791,414315,405569,414926,435625,461600,470512,467329,459041,453968,453315,449798,459334,459223,465447,461150,445813,446626,446154,444025,434265,433063,429825,425865,424456,416053,420938,410389,425522,417056,411404,404106,382498,289497,281703,273366,251816,224905,234778,243629,239419,233198,231156,222866,220997,205946,204422,188772,178310,153484,139112,120327,105685,90293,73890,60007,48181,36624,27518,11907,7042,13945,]
nb_femmes=-np.array(nb_femmes)
ages=range(0,len(nb_hommes))
plt.figure(figsize=(10,10))
plt.bar(ages,nb_hommes,width=1,label="hommes")
plt.bar(ages,nb_femmes,width=1,label="femmes")
xticks=np.arange(0,101,10)
plt.xticks(xticks)
for x in xticks: plt.axvline(x,color="0.9",linewidth=0.3)
plt.legend();
```
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags:
Exo: changez les abscisses pour faire apparaitre les années de naissances. Essayez de justifier les trous et les bonnes dans la pyramide d'âge.
Exo: Comment expliquez-vous le grand nombre de centenaire comparez aux personnes de 98 ou 99 ans ?
%% Cell type:markdown id: tags:
## Histogrammes
Considérons maintenant un échantillon c.à.d un ensemble de nombre réels. Dans la plupart des cas les échantillons sont construit:
* soit à partir de simulation successive de v.a (ex: v.a gaussienne)
* soit à partir d'observations (ex: tailles des gens dans la rue)
Dresser l'histogramme d'un échantillon consiste à découper les réel en sous-interavalles, puis d'afficher des batons qui ont pour base ces sous-intervallse, et comme hauteur le nombre d'élément de l'échantillon contenu dans chaque sous-intervalles.
%% Cell type:code id: tags:
``` python
"""l'échantillon à observer"""
X=np.random.normal(0,1,size=1000)
plt.hist(X,bins=15,color='blue',density=True,edgecolor="k");
```
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags:
Explication des options de plt.hist :
* bins=10 : on découpe l'intervalle [min(X),max(X)] en dix sous-intervalles.
* normed=True: la hauteur des batons est normalisée pour que cela ressemble à une densité
* rwidth=0.9: la largeur de chaque baton occupe 90% de chaque sous-intervalle.
%% Cell type:markdown id: tags:
Mais parfois il est préférable de préciser nous même les sous-intervalles (=la base des batons)
%% Cell type:code id: tags:
``` python
X=np.random.normal(0,1,size=1000)
plt.hist(X, bins=[-2,0.5,1,5], density=True,edgecolor="k"); #un choix particulièrement idiot de bins
```
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags:
## Histogramme de loi discrète
%% Cell type:markdown id: tags:
Attention, pour les lois discrètes il faut obligatoirement préciser le découpage.
Pour voir une catastrophe, remplacez bins par 11 dans plt.hist(). Expliquez le phénomène.
%% Cell type:code id: tags:
``` python
n=10
X=np.random.binomial(n,0.5,size=3000)
"""attention np.arange(0,n+2,1) donne l'intervalle discret [0,n+2[= [0,n+1].
on lui soustrait ensuite 0.5 pour avoir chaque entier de [0,n] dans un sous-intervalle"""
bins=np.arange(0,n+2,1)-0.5
""" rwidth=0.6 (=ratio_width) signifie que la base des batons occupe 60% des sous-intervalles. """
plt.hist(X,bins=bins, histtype='bar', color='blue', rwidth=0.6)
"""on précise les graduations en x"""
plt.xticks(np.arange(0,n+1,1));
```
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags:
### Plusieurs histogrammes
comparons des lois béta
%% Cell type:code id: tags:
``` python
nbData=10000
X1=np.random.beta(3,1,size=nbData)
X2=np.random.beta(2,3,size=nbData)
X3=np.random.beta(1,0.5,size=nbData)
plt.hist([X1,X2,X3],bins=20,label=["a=3,b=1","a=2,b=3","a=1,b=0.5"]);
plt.legend();
```
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags:
La variété des formes possible d'une loi la rend très pratique en modélisation.
Choisissez des lois bêta bien choisies (dilatée par une constante), pour modéliser les variables X suivantes:
* X : quantité chocolat consommée par les français (sachant que plus on en mange, et plus on a envie d'en manger)
* X : durée de vie des français
* X : durée de vie des grenouilles (forte mortalité infantile)
Dressez les histogrammes
Connaissez-vous d'autre loi pour des durées de vie ?
%% Cell type:markdown id: tags:
## Superposons histogramme et densité