lbm_cl.py 4.28 KB
Newer Older
ph's avatar
ph committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
#!/usr/bin/env python3
# -*- coding: utf-8 -*-


# resolution of a transport equation by the finite volume method
# on regular grid

# regular python implementation compared to a pyopencl version


from __future__ import absolute_import, print_function
import pyopencl as cl
import numpy as np
import matplotlib.pyplot as plt

import time


##################" definition of default values
# number of conservative variables
_m = 1

# number of kinetic variables
_n = 4 * _m


# grid size
ph's avatar
ph committed
28 29
_nx = 1024
_ny = 1024
ph's avatar
ph committed
30 31 32 33 34 35 36 37 38 39 40

Lx = 1.
Ly = 1.

_dx = Lx / _nx
_dy = Ly / _ny

# transport velocity
vel = np.array([1., 1.])

# lattice speed
ph's avatar
ph committed
41
_vmax = 3.
ph's avatar
ph committed
42 43 44


# time stepping
ph's avatar
ph committed
45 46
_Tmax = 10. / _vmax
#_Tmax = 0.
ph's avatar
ph committed
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
cfl = 1

_dt = cfl * _dx / _vmax
############# end of default values

def exact_sol(xy, t):
    x = xy[0] - t * vel[0] - 0.5
    y = xy[1] - t * vel[1] - 0.5
    d2 = x * x + y *y
    w = np.exp(-30*d2)
    return w



def solve_ocl(m = _m, n = _n, nx = _nx, ny = _ny,
              Tmax = _Tmax, vmax = _vmax,
              dx = _dx, dy = _dy,
              dt = _dt, exact_sol = exact_sol,
              animate = False):

    # load and adjust  C program
    source = open("lbm_kernels.cl", "r").read()
    source = source.replace("_nx_", "("+str(nx)+")")
    source = source.replace("_ny_", "("+str(ny)+")")
    source = source.replace("_dx_", "("+str(dx)+"f)")
    source = source.replace("_dy_", "("+str(dy)+"f)")
    source = source.replace("_dt_", "("+str(dt)+"f)")
    source = source.replace("_m_", "("+str(m)+")")
    source = source.replace("_n_", "("+str(n)+")")    
    source = source.replace("_vx_", "("+str(vel[0])+"f)")
    source = source.replace("_vy_", "("+str(vel[1])+"f)")
    source = source.replace("_lambda_", "("+str(vmax)+"f)")

    #print(source)

    #exit(0)

    # OpenCL init
    ctx = cl.create_some_context()
    mf = cl.mem_flags

    # compile OpenCL C program
    prg = cl.Program(ctx, source).build(options = "-cl-strict-aliasing  \
                                                  -cl-fast-relaxed-math")

    # create OpenCL buffers
    fn_gpu   = cl.Buffer(ctx, mf.READ_WRITE,
                         size=(4 * m * nx * ny * np.dtype('float32').itemsize))
    fnp1_gpu = cl.Buffer(ctx, mf.READ_WRITE,
                         size=(4 * m * nx * ny * np.dtype('float32').itemsize))

    # create a queue (for submitting opencl operations)
    queue = cl.CommandQueue(ctx, properties=cl.command_queue_properties.PROFILING_ENABLE)


    # init data
    event = prg.init_sol(queue, (nx * ny, ), (32, ), fn_gpu)
    event.wait()

    # number of animation frames
ph's avatar
ph committed
107
    nbplots = 100
ph's avatar
ph committed
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    itermax = int(np.floor(Tmax / dt))
    iterplot = int(itermax / nbplots)

    # time loop
    t = 0
    iter = 0
    elapsed = 0.;
    fn_cpu = np.empty((4 * m * nx * ny, ), dtype = np.float32)

    print("start OpenCL computations...")
    while t < Tmax:
        t = t + dt
        iter = iter + 1
        #event = prg.time_step(queue, (nx * ny, ), (32, ), wn_gpu, wnp1_gpu)
        event = prg.time_step(queue, (nx * ny, ), (64, ), fn_gpu, fnp1_gpu)
        #event = prg.time_step(queue, (nx * ny, ), (32, ), wn_gpu, wnp1_gpu, wait_for = [event])
        event.wait()
        elapsed += 1e-9 * (event.profile.end - event.profile.start)
        # exchange buffer references for avoiding a copy
        fn_gpu, fnp1_gpu = fnp1_gpu, fn_gpu
        print("iter=",iter, " t=",t, "elapsed (s)=",elapsed)
        if iter % iterplot == 0 and animate:
            cl.enqueue_copy(queue, fn_cpu, fn_gpu).wait()
ph's avatar
ph committed
131
            wplot = np.reshape(fn_cpu, (n, nx, ny))
ph's avatar
ph committed
132
            plt.clf()
ph's avatar
ph committed
133 134
            #plt.imshow(np.sum(wplot, axis = 0),vmin=0, vmax=1)
            plt.imshow(np.sum(wplot, axis = 0))
ph's avatar
ph committed
135 136 137 138 139 140 141
            plt.gca().invert_yaxis()
            plt.colorbar()
            plt.pause(0.01)

    # copy OpenCL data to CPU and return the results
    cl.enqueue_copy(queue, fn_cpu, fn_gpu).wait()

ph's avatar
ph committed
142
    wplot_gpu = np.reshape(fn_cpu,(n, nx, ny))
ph's avatar
ph committed
143 144 145
    return wplot_gpu

# gpu solve
ph's avatar
ph committed
146
wplot_gpu = solve_ocl(animate = True)
ph's avatar
ph committed
147
plt.clf()
ph's avatar
ph committed
148
plt.imshow(np.sum(wplot_gpu,axis=0), vmin=0, vmax=1)
ph's avatar
ph committed
149 150 151 152
plt.gca().invert_yaxis()
plt.colorbar()
plt.show()

ph's avatar
ph committed
153 154 155 156 157 158
# for iv in range(4):
#     plt.imshow(wplot_gpu[iv,:,:])
#     plt.gca().invert_yaxis()
#     plt.colorbar()
#     plt.show()

ph's avatar
ph committed
159 160 161 162 163 164 165 166 167

# check difference
# plt.clf()
# plt.imshow(wplot_cpu-wplot_gpu)
# plt.gca().invert_yaxis()
# plt.colorbar()
# plt.show()